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INTRODUCTION 

  The long-term decline of waterbird populations and the need for conservation actions 

directed at these species has been recognized at continental (Kushlan et al. 2002), regional 

(Soulliere et al. 2007), and state levels (e.g., Eagle et al. 2005).  The Upper Mississippi River and 

Great Lakes Region Joint Venture (hereafter JV) is implementing waterbird conservation 

following an adaptive framework referred to as Strategic Habitat Conservation.  This framework 

is a process consisting of four equally important components: biological planning, conservation 

design, implementation or program delivery, and evaluation (National Ecological Assessment 

Team 2006, JV 2007).  The identification of limiting factors and development of models 

describing population-habitat relationships are core activities of biological planning, and 

essential to developing habitat conservation objectives that achieve population goals.  The JV 

Waterbird Habitat Conservation Strategy (Soulliere et al. 2007) contains population-habitat 

models for focal waterbird species based on each species’ biology and habitat requirements.  

However, biological information was lacking for many marsh birds when the JV models were 

developed, which resulted in the use of planning assumptions that require testing. 

  Our goal for this project was to investigate relationships between marsh bird occupancy 

and fine- and large-scale habitat variables in Michigan and Ohio wetlands through analyses of 

existing and newly collected data in an effort to reduce planning uncertainty.  We focused our 

study on breeding use of wetlands by two “JV focal species” (Wilson’s Snipe [Gallinago 

delicata] and Black Tern [Chlidonias niger]) and eight additional marsh bird species of 

management concern (Pied-billed Grebe [Podilymbus podiceps], American Bittern [Botaurus 

lentiginosus], Least Bittern [Ixobrychus exilis], Virginia Rail [Rallus limicola], Sora [Porzana 

carolina], Common Gallinule [Gallinula galeata], American Coot [Fulica americana], and 
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Forster’s Tern [Sterna forsteri]).  Three other JV focal species, Yellow Rail (Coturnicops 

noveboracensis), King Rail (Rallus elegans), and Black-crowned Night-Heron (Nycticorax 

nycticorax), were not detected often enough to facilitate statistical analyses.  All of our 10 focal 

species were considered species of greatest conservation need in one or more states within the JV 

region (e.g., Eagle et al. 2005, Wisconsin Department of Natural Resources [DNR] 2005, Ohio 

DNR 2006).  Our objectives were to (1) explore relationships between marsh bird occupancy and 

habitat variables at fine and large scales for 10 marsh bird species using multiple statistical 

techniques; and (2) using the information gained from these analyses, develop GIS models to 

predict marsh bird distributions in Michigan and Ohio. 

 

STUDY AREAS 

  We combined data from several studies conducted in Michigan and Ohio spanning 

2005—2013 in our analyses (Figure 1).  We used the following data sets in our analyses: 1) 192 

points surveyed in coastal wetlands at St. Clair Flats (Lake St. Clair) and Saginaw Bay (Lake 

Huron) during 2005—2007 (Monfils et. al 2014); 2) 455 points sampled in 2009 and 2010 as 

part of a statewide marsh bird study of glaciated portions of Ohio (Kahler 2013); 3) 32 points 

sampled in 2010 as part of an inventory of Waterloo State Recreation Area (Kost et al. 2010); 4) 

61 points surveyed in 2011 within the Saginaw Bay watershed (Monfils unpublished data); and 

4) 253 points sampled during 2010—2013 for this study as part of the Michigan Marsh Bird 

Survey.  The combined data set represented over 2,200 point counts conducted during 2005—

2013 at 993 points in Michigan and Ohio. 
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Figure 1.  Locations of marsh bird survey sites surveyed during 2005—2013 in Michigan and 

Ohio from which data were analyzed to evaluate the influence of wetland and land cover 

variables at fine and large scales on marsh bird occupancy. 
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METHODS 

Bird Surveys 

  Marsh bird occurrence data were collected using a standardized point-count method 

(Conway 2011), with avian survey stations selected randomly within emergent wetlands and 

spaced ≥ 400 m apart.  Bird species recorded during surveys varied among the data sets used for 

our study.  Monfils et al. (2014) recorded all wetland bird species detected, whereas Kahler 

(2013) focused on those species targeted by the Conway (2011) protocol (i.e., Pied-billed Grebe, 

American Bittern, Least Bittern, King Rail, Virginia Rail, Sora, Common Gallinule, and 

American Coot) and Black Tern.  In addition to the species surveyed by Kahler (2013), Michigan 

Marsh Bird Survey participants recorded Yellow Rail, Sandhill Crane (Grus canadensis), 

Wilson’s Snipe, Forster’s Tern, Sedge Wren (Cistothorus platensis), Marsh Wren (Cistothorus 

palustris), Le Conte’s Sparrow (Ammodramus leconteii), Swamp Sparrow (Melospiza 

georgiana), and Yellow-headed Blackbird (Xanthocephalus xanthocephalus). 

  Point counts consisted of a five-minute passive listening period followed by an audio 

broadcast period of secretive marsh bird calls (one-min broadcast series per species).  Calls of 

five species were broadcasted during Michigan surveys resulting in a 10-min point count.  In 

southern Michigan, calls of five species were played in this order: Least Bittern, Sora, Virginia 

Rail, King Rail, and American Bittern.  In northern Michigan, calls of Least Bittern, Yellow 

Rail, Sora, Virginia Rail, and American Bittern were broadcasted.  Calls of Least Bittern, Sora, 

Virginia Rail, King Rail, Pied-billed Grebe, American Bittern, and a second Least Bittern (in this 

order) were broadcasted during Ohio surveys, resulting in a total survey time of 12 min (Kahler 

2013).  We recorded all marsh birds seen or heard during each point count.  Surveyors estimated 

distances from count stations to birds using ocular/aural estimation and/or a laser rangefinder; 
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distances to primary study species (i.e., grebes, bitterns, rails, coots, gallinules) were estimated to 

the nearest five meters, whereas detections of all other (secondary) species were placed in one of 

three distance categories (≤50 m, >50-100 m, and >100 m).  We used only detections recorded 

within 100 m of stations in our analyses. 

 

Fine-scale Wetland Characteristics 

  We conducted quadrat sampling to estimate several fine-scale vegetation and physical 

variables to be included in analyses (Table 1).  In addition to the sampling done during marsh 

bird surveys conducted in Michigan as part of this study, we used data collected with the same 

methodology as part of other studies (Monfils et al. 2014, Monfils unpublished data).  Three 

randomly selected 0.25-m
2
 quadrats were sampled near each point count station.  Quadrat frames 

were situated randomly between 1 m and 25 m along 3 compass bearings (120°, 240°, and 360°).  

We estimated percent cover of six plant taxa (cattail [Typha spp.], bulrush [Schoenoplectus spp.], 

sedge [Carex spp.], rush [Juncus spp.], common reed [Phragmites australis], and grass [other 

than common reed]) and several vegetation structural categories, plus measured water depth, 

depth of organic sediments, and maximum height of standing live or dead vegetation, and 

counted live and dead shrub and tree stems > 2 m tall within 2.5 m of the quadrat center (Riffell 

et al. 2001).  Depth of organic sediments was estimated to the nearest cm by pushing a 1.2-m 

wooden rod (2-cm diameter, graduated in cm) to the bottom of the organic layer and measuring 

the depth of the sediments minus water depth.  We also counted the number of cattail, bulrush, 

and common reed stems present within each quadrat.  Percent cover was also estimated for the 

following structural groups: persistent deep-water emergents (e.g., Typha spp., Schoenoplectus
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Table 1.  Descriptions of fine- and large-scale variables estimated via quadrat sampling and remote sensing that were used in analyses 

of marsh bird occurrence in Michigan and Ohio with restricted (n = 414) and full (n = 993) data sets.  An “X” indicates the variable 

was used in a given analysis: classification and regression tree (CART), logistic regression, and occupancy modeling. 

   Restricted Data Set Full Data Set 

Variable Description Name Scale
1
 CART 

Logistic 

Regression 

Occupancy 

Modeling CART 

Quadrat Sampling       

 Maximum height of live or dead vegetation height fine-25 m X X X  

 Water depth depth fine-25 m X X X  

 Organic sediment depth organic fine-25 m X X X  

 % cover emergent plants EM fine-25 m X X X  

 % cover floating plants float fine-25 m X X X  

 % cover nonpersistent shallow-water emergent plants non_shal fine-25 m X X X  

 % cover grass grass fine-25 m X X X  

 % cover Typha spp. Typ_spp fine-25 m X X X  

 % cover Schoenoplectus spp. Sch_spp fine-25 m X X X  

 % cover Phragmites australis Phr_spp fine-25 m X X X  

 % cover Carex spp. Car_spp fine-25 m X X X  

 % cover woody vegetation wood fine-25 m X X X  

Remotely Sensed       

 Vegetation to water edge density within 100 m ED fine-100 m X X X  
 Ratio of emergent:open water/aquatic bed wetland  

 within 100 m ratio fine-100 m X X X  

 Number of vegetation patches within 100 m nveg fine-100 m X X X  

 % open water/aquatic bed wetland within 1 km abow1km large-1 km X X X X 

 % emergent wetland within 1 km emnofor1km large-1 km X X X X 

 % unsuitable anthropogenic cover within 1 km anhab1km large-1 km X X X X 

 Distance to nearest open water/aquatic bed wetland dist2abow large-unlimited X X X X 

 Distance to nearest unsuitable cover  dist2nhab large-unlimited X X X X 

 Distance to nearest road dist2rd large-unlimited X X X X 

 Distance to nearest river dist2river large-unlimited X X X X 
1
Variable categorization (fine or large scale) and buffer distance from marsh bird survey points within which variables were estimated. 
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spp.), persistent shallow-water emergents (e.g., P. australis, Carex spp.), nonpersistent deep-

water emergents (e.g., Sagittaria spp., Zizania spp.), nonpersistent shallow-water emergents 

(e.g., Eleocharis spp., Polygonum spp.), floating-leaved and free-floating vegetation (e.g., 

Nuphar spp., Lemna spp.), and submersed aquatic species (e.g., Potamogeton spp., Chara spp.). 

 

Remotely Sensed Variable Estimation 

  We hypothesized that several remotely sensed variables (Table 1) could function as 

predictors of marsh bird occupancy during the breeding period based on our understanding of 

species life-history requirements, species habitat associations, and expert opinion.  These 

remotely-sensed variables were generated by creating ModelBuilder workflows in ArcGIS 10.0 

(ESRI, Redlands, CA) and resulted in 30 m resolution raster surfaces across a 12 km full, 

rounded buffer of Michigan and Ohio.  See Appendix A for a detailed description of the process 

used for each variable. 

  We measured interspersion variables for all Michigan sites from 1 m resolution color 

infrared photos obtained from the State of Michigan Imagery Solution.  Interspersion variables 

were not estimated for Ohio sites, because appropriate aerial imagery was not available.  All 

photos were National Agriculture Imagery Program (NAIP) county mosaics derived from 

original digital orthophoto quarter quads produced for the U.S. Department of Agriculture Farm 

Service Agency Aerial Photography Field Office taken in summer of 2009 or 2010.  We 

classified the photo pixels into two classes (water and vegetation) using an interactive supervised 

classification routine in ArcGIS 10.0.  All emergent vegetation was categorized as one class 

because we wanted to analyze effects of interspersion of water and vegetation on bird use (see 

Rehm and Baldasarre 2007), not the response to variation in types of emergent/submergent 
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vegetation.  A supervised classification routine was necessary due to variation in photograph 

color.  During a supervised classification, we “trained” a computer to recognize values of 

infrared light reflectivity for each class (water or vegetation) based on pixel values at defined 

sites.  We used two training sites (water and vegetation) for each individual photo and each site 

consisted of at least one million pixels distributed throughout the image.  Training sites with 

selected pixels were verified from aerial photographs and entered into the computer as one of the 

two classes.  The computer assigned all remaining pixels to one of the two classes based on 

values defined by the training sites.  A detailed description of the supervised image classification 

process is found in Appendix B. 

  We analyzed classified images in ArcGIS 10.0 to obtain values for cover-to-water ratio 

(RATIO), number of vegetation patches (NVEG), and edge density (ED) within a 100-m radius 

centered at Michigan survey points.  We calculated the percent open-water surface area at each 

site, subtracted the value from 50, and multiplied the absolute value by two to obtain a RATIO 

measurement.  Consequently, wetland with cover-to-water ratios approaching 1:1 were given 

values close to 0, and wetlands moving away from 1:1 ratios (e.g., 0 or 100% open water) were 

given values closer to 1.  A detailed description of the process used to generate interspersion 

variables is provided in Appendix A. 

 

Analysis 

  We investigated relationships between marsh bird occurrence and variables 

characterizing potential habitat surrounding survey stations at fine and large scales.  Fine-scale 

variables consisted of those physically gathered within 25 m of points during quadrat sampling 

and remotely sensed variables collected within 100 m of points.  Large-scale variables were all 
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estimated via remote sensing within 1-km buffers surrounding points or using unlimited 

boundaries (i.e., distance variables).  We examined overall marsh bird community structure and 

association with explanatory variables using multivariate analysis.  We investigated relationships 

between individual species’ occupancy and fine- and large-scale variables using three 

techniques: classification and regression tree (CART) analysis, logistic regression, and 

occupancy modeling.  Prior to conducting analyses, we excluded variables highly correlated (R ≥ 

0.60) with other variables, as well as several fine-scale variables occurring on a low proportion 

(<15%) of quadrats.  We used a final set of 22 explanatory variables (15 fine-scale and seven 

large-scale; Table 1) in all analyses. 

  We conducted all three modeling analyses on the same subset of 414 points surveyed in 

Michigan during 2006—2013 for which all explanatory variables were available.  However, we 

also conducted CART analysis using data from all 993 points surveyed in Michigan and Ohio 

during 2005—2013 with only large-scale variables, which we used to inform the development of 

GIS models to depict probability of occurrence in distribution maps.  We modeled relationships 

between marsh bird occurrence and independent variables for the following 10 species: Pied-

billed Grebe, American Bittern, Least Bittern, Virginia Rail, Sora, Common Gallinule, American 

Coot, Wilson’s Snipe, Black Tern, and Forster’s Tern.  We did not detect Yellow Rail, King 

Rail, and Black-crowned Night-Heron often enough to build statistical models. 

 

Multivariate 

  We conducted nonmetric multidimensional scaling (NMDS; McCune and Grace 2002) to 

examine marsh bird community structure and possible associations with fine- and large-scale 

variables.  We implemented the analysis using a subset of Michigan sites where we had both 
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fine- and large-scale vegetation and physical variables.  We included only sites where surveys 

were conducted for all primary and secondary target species according to the Michigan Marsh 

Bird Survey protocol (MiBCI 2010), which resulted in 15 species being included in the analysis.  

All variables were averaged by site and year prior to analysis, resulting in a final set of 79 

sample units.  We performed NMDS on average avian abundance using the Bray-Curtis distance 

measure, 250 runs on the original data matrix, and a maximum of 500 iterations. A final solution 

was achieved when an instability value of 0.00001 was obtained or after 500 iterations.  We 

conducted the Monte-Carlo permutation procedure (McCune and Grace 2002) with 250 

randomized runs to evaluate if axes produced by NMDS explained more variation than by 

chance alone.  We then overlaid associations with explanatory variables based on correlations 

with NMDS axis scores.  We conducted multivariate analysis using PC-ORD 6.15 (MjM 

Software, Gleneden Beach, OR). 

 

Classification and Regression Tree 

  The occurrence of each species was analyzed using a classification and regression tree 

(CART; Breiman et al. 1984) approach.  We implemented the CART analysis treating 

occurrence as a 0/1 categorical dependent variable, thereby providing output results reflecting 

predictions of whether a site would be occupied or not.  We summarized species occurrence by 

survey point across all years.  We had a full matrix of habitat variables available at both a fine 

and large scale for 414 survey points.  Independent variables consisted of the 22 described 

above, and the CART analysis used these in three subsets: 1) fine-scale variables only; 2) large-

scale variables only; and 3) all variables (Table 1).  Large-scale analyses included independent 

variables measured remotely in a GIS using 1,000-m and unlimited buffers surrounding each 
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point.  Comparison of results across these variable sets allowed us to determine the relative 

performance of fine-scale and large-scale variables for predicting the probability of occurrence.  

We also conducted CART analysis using the full set of 993 survey points from Michigan and 

Ohio using large-scale independent variables only.  This analysis was used to develop GIS 

models to predict and map probability of occurrence for each species within Michigan and Ohio. 

  The CART analyses were conducted using the rpart function with the statistical package 

R v2.12.2 (R Development Core Team, http://www.R-project.org).  We first developed a CART 

for all data points and all independent variables defined for in each subset analysis.  The size of 

the tree developed and the variables included were guided by the results of 2,000 cross-

validation sub-samplings.  Results of the CART analysis for each dataset provided a plot of 

Mallow’s complexity parameter (CP) as a function of the tree size.  Trees resulting from the 

CART analysis were “pruned” using the clip.rpart function in R.  A value of CP was chosen for 

each species to provide a reasonable cutoff value for pruning trees to a size that provided a 

parsimonious representation of the data. 

 

Logistic Regression 

  Logistic regression analyses were conducted as a parametric comparison to the CART 

analyses.  Analysis focused on the restricted data set (414 points) to determine the relative 

effectiveness of logistic regression for developing predictions of species occurrence compared to 

CART.  Variables were selected using a backward stepwise procedure, with final variable 

selection using a criterion for retention of p < 0.05.  The logistic regression was used to make 

predictions of species occurrence by using a cut-off of 0.5; occupancy was predicted when the 
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probability of occurrence exceeded 0.5, and non-detection was predicted when the logistic 

regression prediction was <0.5. 

 

Occupancy Modeling 

  We conducted single-season occupancy modeling on a subset of 518 Michigan points for 

which we had both fine- and large-scale vegetation and physical variables.  The likelihood-based 

approach presented by Mackenzie et al. (2002) was used to estimate probabilities of detection 

(i.e., probability of detecting species when present) and proportion of sites occupied for the 10 

marsh bird species.  We conducted occupancy analyses using PRESENCE 6.2 (J. Hines, U.S. 

Geological Survey, Patuxent Wildlife Research Center, Laurel, MD).  We used a tiered approach 

to developing candidate models.  We examined models with detection covariates first and then 

incorporated the best-supported detection configuration into all subsequent models (Olson et al. 

2005, Kroll et al. 2006, Yates and Muzika 2006, Darrah and Krementz 2009).  We began by 

comparing two detection models, one assuming constant probability of detection across survey 

periods and the second incorporating variable detection probabilities by survey period.  The best-

supported configuration of the two models, as indicated by Akaike’s Information Criterion 

(AIC), was used in subsequent models containing detection covariates.  We then compared 

models with four one-variable models containing covariates expected to most influence marsh 

bird detection: maximum vegetation height, percent emergent vegetation, wind speed (according 

to the Beaufort Scale), and noise level (ranked from 0 [no noise] to 4 [intense noise]).  The best-

approximating detection model was included in all subsequent occupancy models containing 

fine- and large-scale covariates.  For each species, we compared 22 occupancy models each of 

which contained one occupancy covariate (Table 1).  We then produced four two- and three-
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variable models using combinations of occupancy covariates from the top three models from our 

candidate sets.  We conducted a goodness-of-fit test with 100 bootstraps for each species using 

our most parameterized model as the global model.  If overdispersion appeared likely (i.e., ĉ > 

1.0), we used quasi-AIC values to rank our candidate models (Burnham and Anderson 2002). 

 

GIS Modeling for Distribution Maps 

  Classification and regression tree models having only large-scale variables were 

generated for each species in ArcGIS 10.0 using the full data set of 993 Michigan and Ohio 

points.  We created ModelBuilder workflows to translate final CART models into 30 m 

resolution prediction surfaces across Michigan and Ohio.  We applied mean aggregation to each 

model to create images for this report at a 2-km resolution. 

 

RESULTS 

Multivariate 

  We used NMDS to investigate possible associations of the overall marsh bird community 

and fine- and large-scale independent variables.  Nonmetric multidimensional scaling is an 

ordination technique well suited to data that are not normally distributed or are on arbitrary, 

discontinuous, or other scales (McCune and Grace 2002).  Ordination methods aim to 

graphically summarize complicated relationships (e.g., many species/variables) by extracting a 

small number of dominant patterns from an infinite number of relationships (McCune and Grace 

2002).  We used NMDS to graphically arrange the sites with regard to marsh bird species 

occurrence and relative abundance on a reduced number of dimensions (e.g., axis 1, axis 2) and 

examine relative abundance of focal species among the study sites.  We also correlated site 
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scores for marsh bird use with our explanatory variables to identify possible associations 

between marsh bird communities and habitat/land cover variables. 

  Initial NMDS analysis indicated marsh bird community structure was best represented by 

two dimensions and a solution with equal or less stress was not likely to occur by chance alone 

(P = 0.012).  After rerunning NMDS with only two dimensions, 85.5% of the variation in the 

original distance matrix was explained (final stress of 10.76), with most (70.5%) of the variation 

in marsh bird use of the sites being explained by axis 1.  Marsh bird community structure 

appeared to be primarily arranged along axis 1, representing a gradient of sites from deep-water 

marshes on the negative end of the axis to shallow-water wet meadows on the positive end 

(Figure 2).  Sites on the negative end of axis 1 tended to have greater water depths, greater 

percent cover of Typha, and greater proportions of open water/aquatic bed wetland within 1 km 

compared to sites toward the negative end of the axis (Figure 2).  Conversely, sites on the 

positive end of axis 1 tended to have greater percent cover of woody vegetation, grass, and Carex 

than sites on the positive end.  Relative abundances of some species appeared to be greater on the 

negative end of axis 1 (e.g., Pied-billed Grebe, Marsh Wren; Figure 3), indicating an association 

with deep-water marshes and open water, whereas other species (e.g., Sedge Wren, Wilson’s 

Snipe; Figure 3) were more abundant at sites toward the positive end of axis 1, suggesting a 

relationship with greater amounts of wet meadow and woody vegetation. 
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Figure 2.  Biplot of first and second axes scores from non-metric multidimensional scaling 

(NMDS) of relative abundance of marsh bird species at 79 sites in Michigan during 2006—

2013.  Sites (open triangles) are overlaid by explanatory variables (labeled arrows) that were 

correlated with NMDS axes (r
2
>0.20).  Arrow length indicates strength of correlation with 

site scores of marsh bird use. 
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Figure 3.  Biplots of first and second axes scores from nonmetric multidimensional scaling 

(NMDS) of relative abundance of marsh bird species at 79 sites in Michigan during 2006—

2013.  Sites (triangles) are proportionally scaled with regard to relative abundance of eight 

marsh bird species (larger triangles indicate greater abundance).  Species abbreviations: 

AMCO = American Coot, FOTE = Forster’s Tern, PBGR = Pied-billed Grebe, SACR = 

Sandhill Crane, SEWR = Sedge Wren, VIRA = Virginia Rail, and WISN = Wilson’s Snipe. 
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Figure 3.  Continued. 
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CART and Logistic Regression 

  Percent occurrence was low for all ten species examined, and we observed similar 

patterns of occurrence in both the restricted and full data sets (Table 2).  Virginia Rail was the 

most commonly detected species, being recorded at about one quarter of the points.  Pied-billed 

Grebe, American Bittern, Least Bittern, American Coot, Common Gallinule, and Sora were 

detected at 10-14% of points.  The remaining three species, Wilson’s Snipe, Black Tern, and 

Forster’s Tern, were even less common and occurred at 3-8% of points. 

 

Table 2.  Percent occurrence for 10 marsh bird species analyzed within the restricted and full 

data sets used in analyses.  The restricted data set included Michigan survey points having both 

fine- and large-scale independent variables, whereas the full set included all survey points. 

  Percent Occurrence 

Common Name Abbreviation 

Restricted Data Set 

(n = 414) 

Full Data Set 

(n = 993) 

Pied-bill Grebe PBGR 6.4 10.9 

American Bittern AMBI 10.7 10.8 

Least Bittern LEBI 12.8 8.8 

Virginia Rail VIRA 26.1 22.1 

Sora SORA 12.5 13.8 

Common Gallinule COGA 4.2 9.7 

American Coot AMCO 9.6 11.6 

Wilson’s Snipe WISN 4.0 2.9 

Black Tern BLTE 8.1 6.2 

Forster’s Tern FOTE 3.8 6.3 
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  Classification tree analysis with cross-validation resulted in trees for all focal species 

except Least Bittern, and we produced logistical regression models for all 10 species.  In general, 

all models did an excellent job of predicting non-detection (i.e., no birds recorded at a site) with 

an average of 97% correct classification (Table 3).  However, performance of the models in 

predicting points at which a species was detected varied across models (Table 4).  As expected, 

CART models including all available variables performed best, correctly predicting an average 

of 47% of points where a species was present.  Logistic regression on the same data did much 

worse, correctly predicting only 28% of points at which a species was present.  The percentage 

of correct predictions by CART models with large-scale (average 36%) and fine-scale (average 

40%) variables only did not perform as well as CART models with the full data set but still 

performed better than logistic regression (Table 4). 

 

 

Table 3.  Proportion of Michigan marsh bird survey sites correctly classified as having “non-

detection” by classification and regression tree (CART) models with all variables, large-scale 

variables only, and fine-scale variables only, and with logistic regression using all variables. 

Species 

CART Logistic 

Regression –  

All Variables All Variables 

Large-scale 

Variables Only 

Fine-scale 

Variables Only 

Pied-billed Grebe 0.96 0.98 0.98 0.98 

American Bittern 0.98 0.94 0.97 0.97 

Virginia Rail 0.95 0.89 0.95 0.87 

Sora 0.96 0.97 0.96 0.99 

Common Gallinule 0.98 1.00 0.97 0.99 

American Coot 0.96 0.97 0.97 0.96 

Wilson’s Snipe 0.98 1.00 0.99 0.99 

Black Tern 1.00 0.99 0.96 0.97 

Forster’s Tern 0.98 0.98 0.98 0.99 

     Average 0.97 0.97 0.97 0.97 
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Table 4.  Proportion of Michigan marsh bird survey sites correctly classified as having 

“detection” by classification and regression tree (CART) models with all variables, large-scale 

variables only, and fine-scale variables only, and with logistic regression using all variables. 

Species 

CART Logistic 

Regression –  

All Variables All Variables 

Large-scale 

Variables Only 

Fine-scale 

Variables Only 

Pied-billed Grebe 0.51 0.43 0.39 0.18 

American Bittern 0.52 0.51 0.23 0.15 

Virginia Rail 0.34 0.58 0.34 0.45 

Sora 0.36 0.31 0.31 0.05 

Common Gallinule 0.60 0.20 0.65 0.38 

American Coot 0.51 0.44 0.44 0.40 

Wilson’s Snipe 0.38 0.00 0.38 0.27 

Black Tern 0.33 0.27 0.50 0.19 

Forster’s Tern 0.70 0.54 0.39 0.43 

     Average 0.47 0.36 0.40 0.28 

 

 

  The variables included in each model differed (Tables 5, 6 and 7), but some general 

patterns were apparent.  In the logistic regression analyses, final models contained 2 to 9 

variables, with an average of 5.6 variables being significant at the 0.05 level.  In the final models 

constructed by stepwise variable selection, the most frequently included fine-scale variables were 

ED, depth, EM, and Sch_spp (Table 5).  Among the large-scale variables, dist2nhab, anhab1km, 

and dist2river were the most commonly selected variables (Table 5).  In the CART analysis 

using all variables, the final classification trees also contained 2 to 9 variables but on average had 

4.8 variables included in the final tree.  Note that a test of significance is not applicable to CART 

analyses and that trees frequently contained multiple splits based on a single variable.  As with 

logistic regression, depth was among the most commonly included fine-scale variable, but 

height, organic, and Typ_spp were also regularly selected variables in CART models.  Among 

the large-scale variables, dist2nhab, anhab1km, and dist2river were more commonly included (as 

they were in logistic regression), but abow1km was also frequently chosen. 
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Table 5.  Variables included in logistic regression analyses conducted using all variables for 

marsh birds detected during surveys in Michigan, 2006—2013.  Variable names are as in Table 

1. 
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Fine-scale Variables            

 height  

 

    

 

 X 

 

1 

 depth X 

 

X   X X X 

  

5 

 organic  

 

    

 

 

  

0 

 EM  X  X  X 

 

X 

  

4 

 float  

 

X    

 

 

  

1 

 non_shal  X     

 

 

  

1 

 grass  X     

 

 

  

1 

 Typ_spp  

 

   X 

 

 

  

1 

 Sch_spp  

 

 X  X X  X 

 

4 

 Phr_spp  X  X  X 

 

 

  

3 

 Car_spp  

 

  X  

 

X 

 

X 3 

 ED  

 

 X  X X X X X 6 

 ratio X 

 

    

 

 

  

1 

 nveg  

 

X X   

 

 

  

2 

 wood           0 

            

Large-scale Variables  

 

    

 

 

    emnofor1km  X  X X  

 

 

  

3 

 dist2nhab  X X X X X 

 

 

  

5 

 anhab1km  

 

 X X X X  

 

X 5 

 abow1km  X     

 

X 

 

X 3 

 dist2abow  X     

 

 

  

1 

 dist2rd  

 

    X  

  

1 

 dist2river  

 

   X X X X X 5 

            

No. variables 2 8 4 8 4 9 6 6 4 5 5.6 



  

22 

Table 6.  Variables included in classification and regression tree (CART) analyses conducted 

using all variables for marsh birds detected during surveys in Michigan, 2006—2013.  Variable 

names are as in Table 1. 
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Fine-scale Variables           

 height  X X     X X 4 

 depth X   X X X    4 

 organic X X      X  3 

 EM  X  X      2 

 float  X X       2 

 non_shal          0 

 grass          0 

 Typ_spp  X X X      3 

 Sch_spp        X  1 

 Phr_spp          0 

 Car_spp       X  X 2 

 ED     X X    2 

 ratio         X 1 

 nveg          0 

 wood          0 

           

Large-scale Variables           

 emnofor1km  X  X      2 

 dist2nhab  X  X   X   3 

 anhab1km  X  X X     3 

 abow1km X    X   X X 4 

 dist2abow X        X 2 

 dist2rd      X    1 

 dist2river  X  X    X X 4 

           

No. variables 4 9 3 7 4 3 2 5 6 4.8 
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Table 7.  Variables included in classification and regression tree (CART) analyses conducted 

using only fine- or only large-scale variables for marsh birds detected during surveys in 

Michigan, 2006—2013.  Variable names are as listed in Table 1. 
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Fine-scale Variables           

 height   X   X X X X 5 

 depth X X   X X X  X 6 

 organic X   X X   X  4 

 EM X   X      2 

 float   X X      2 

 non_shal  X        1 

 grass          0 

 Typ_spp  X X X X     4 

 Sch_spp        X  1 

 Phr_spp          0 

 Car_spp  X     X   2 

 ED     X X X X  4 

 ratio X   X    X X 4 

 nveg     X   X X 3 

 wood           

           

Large-scale Variables           

 emnofor1km X X X X  X   X 6 

 dist2nhab  X  X      2 

 anhab1km X X X X X X    6 

 abow1km X  X X  X   X 5 

 dist2abow X  X X X X  X  6 

 dist2rd  X X   X   X 4 

 dist2river X X X X X X  X X 8 
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CART models based only on local-scale or landscape-scale variables showed a somewhat 

different pattern of variable inclusion (Table 7).  For fine-scale variables, ED and depth were 

commonly included, as they were in the CART using all variables, but height, organic, Typ_spp, 

and ratio were also frequently selected.  Among the large-scale variables, dist2river was chosen 

in 8 of the 9 CART models, and all other variables were frequently included except for 

dist2nhab. 

 

Occupancy Modeling 

  We modeled detection and occupancy probabilities for all 10 marsh bird focal species.  

There was considerable variation in detection probability by species and survey period (Table 8), 

but the probability of detecting marsh bird species when present was low, with an overall 

average of 0.28 for the 10 species combined.  Least Bittern had the lowest detection probability 

(0.12—0.22), whereas greatest detection probabilities were estimated for Sora (0.62) during the 

first survey period and American Coot (0.52) during the second survey period.  Despite having 

loud, resounding calls, Pied-billed Grebe and American Bittern detectability estimates were 

about 0.14—0.32 across the three survey periods.  Detection probability appeared to vary by 

survey period for eight of the 10 species examined.  Probability of detecting Pied-billed Grebe 

and Sora was greatest in the first period.  American Bittern detection probabilities for the first 

two periods were similar and greater than the third.  Least Bittern and American Coot 

detectability was greatest during the second survey period.  Common Gallinule and Black Tern 

detectability estimates were greater in the later two periods compared to the first.  Height was the 

detection covariate included most often in best-supported models.  Detection probability for 

American Bittern, Least Bittern, Virginia Rail, Black Tern, and Forster’s Tern was negatively 
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related to vegetation height.  Pied-billed Grebe and Common Gallinule detectability was 

negatively associated with percent cover of emergents.  Wilson’s Snipe was negatively related to 

noise level, whereas American Coot showed a positive association. 

 

 

 

Table 8.  Naïve occupancy and model-estimated occupancy (ψ) and detection probability (p) for 

10 marsh bird species recorded at 518 points surveyed in Michigan during 2006—2013.  

Estimates of ψ and p were obtained using the best-approximating model for each species and 

detectability estimates are listed by survey period (p1, p2, and p3). 

 Occupancy
1
 Detection

2
  

Species Naïve  ψ SE p1 SE p2 SE p3 SE 

Pied-billed Grebe 0.097 0.187 0.057 0.322 0.087 0.196 0.063 0.189 0.062 

American Bittern 0.168 0.336 0.081 0.269 0.066 0.304 0.070 0.142 0.040 

Least Bittern 0.106 0.276 0.078 0.122 0.042 0.226 0.063 0.115 0.038 

Virginia Rail 0.270 0.380 0.051 0.398 0.038 0.390 0.039 0.381 0.040 

Sora 0.143 0.244 0.046 0.618 0.098 0.214 0.048 0.049 0.021 

Common Gallinule 0.081 0.112 0.031 0.244 0.078 0.425 0.110 0.378 0.108 

American Coot 0.158 0.196 0.032 0.378 0.066 0.523 0.070 0.360 0.060 

Wilson’s Snipe 0.050 0.108 0.050 0.292 0.157 0.094 0.055 0.244 0.113 

Black Tern 0.100 0.204 0.054 0.052 0.024 0.235 0.054 0.316 0.068 

Forster’s Tern 0.102 0.171 0.044 0.334 0.056 0.303 0.057 0.278 0.056 

          

Average 0.128 0.221 --- 0.303 --- 0.291 --- 0.245 --- 
1
Naïve occupancy is the observed proportion of sites occupied, whereas ψ is the model-estimated 

proportion of sites occupied after accounting for imperfect detection. 
2
Model-estimated probability of detecting species when present. 
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  The observed proportion of points occupied (i.e., naïve occupancy) was low for all 

species, with a mean of 0.13 and a range from 0.05 for Wilson’s Snipe to 0.27 for Virginia Rail 

(Table 8).  Model-estimated occupancy averaged 0.22 for all 10 species combined.  After 

accounting for imperfect detection, model-estimated proportion of sites occupied was lowest for 

Common Gallinule and Wilson’s Snipe at 0.11 and greatest for Virginia Rail (0.38) and 

American Bittern (0.34).  Best-supported models for most species contained a mix of fine- and 

large-scale variables, whereas the best-approximating models for Pied-billed Grebe, Least 

Bittern, and American Coot only included fine-scale covariates.  Depth was the covariate most 

often included in best-supported models, being present in models for five species.  Four species 

had anhab1km as a covariate in the best-approximating model (Table 9).  Three variables, 

non_shal, grass, and ED, were included in the best-supported models of three species.  For Sora, 

Wilson’s Snipe, and Black Tern, there was not strong support for any particular model and 

goodness-of-fit tests indicated overdispersion (see Appendix C for detailed occupancy modeling 

results). 
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Table 9.  Occupancy covariates included in best-approximating occupancy models for marsh 

birds detected during surveys conducted in Michigan during 2006—2013.  Positive and negative 

signs indicate direction of association between probability of occupancy and variable.  Variable 

names are as listed in Table 1. 
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Fine-scale Variables            

 height           0 

 depth +  +  + + +    5 

 organic           0 

 EM           0 

 float           0 

 non_shal              3 

 grass              3 

 Typ_spp   +         2 

 Sch_spp           0 

 Phr_spp           0 

 Car_spp         +   2 

 ED +         +  3 

 ratio            1 

 nveg           0 

 wood            1 

            

Large-scale Variables            

 emnofor1km  +  +       2 

 dist2nhab            1 

 anhab1km    + + +      4 

 abow1km          + 1 

 dist2abow           0 

 dist2rd        +   1 

 dist2river            1 
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Patterns in Variable Inclusion 

  The results of analyses including all variables suggest that both fine- and large-scale 

variables are important in predicting marsh bird occurrence.  For both CART and logistic 

regression, models for all but one species included both fine- and large-scale variables.  Best-

approximating occupancy models for seven of 10 species included both fine- and large-scale 

variables.  Although each analytical technique resulted in at least one species having a model 

containing only fine-scale variables, no models contained only large-scale variables.  Water 

depth was a commonly included fine-scale variable among all three techniques.  Edge density 

was the fine-scale variable selected most often by logistic regression models.  Height was 

regularly included in CART models but not in the other analyses.  Dist2nhab and anhab1km 

were the large-scale variables selected most often in logistic regression models.  Best-supported 

occupancy models often included anhab1km.  We found that abow1km was the large-scale 

variable selected most often in CART models, but anhab1km and dist2nhab were regularly 

included as well. 

  The models created by CART analyses are represented by “trees” (see Appendices D and 

E) that provide numerical “threshold” values at each node for independent variables, above and 

below which greater or lesser rates of occurrence were observed for that species.  Variable 

threshold or node values could provide guidance for management or conservation planning by 

identifying conditions associated with greater occupancy by marsh bird species.  We examined 

the node values identified in CART models created using all variables (Appendix D) for the 

seven variables (3 fine-scale, 4 large-scale) regularly included in models across all three 

techniques (Table 10).  Greater rates of occurrence of some species were associated with shorter 

vegetation (< ~0.4 m), greater water depths (> ~0.2 m), greater edge density (> ~0.2), lower 



  

29 

proportions of anthropogenic development within 1 km, greater proportions of open water within 

1 km, and shorter distances to rivers.  However, patterns in variable thresholds were not always 

consistent among species and often conflicted (Table 10).  For example, greater American 

Bittern occurrence was associated with vegetation > 0.15 m and Common Gallinule had greater 

occurrence rates with proportions of open water within 1 km that were > 31.0 and < 3.5. 

 

Table 10.  Variable patterns associated with greater proportion of sites occupied by marsh birds 

during surveys in Michigan, 2006—2013.  Thresholds were obtained from CART analyses 

conducted using all variables.  Variable names are as in Table 1. 

 Fine-scale Variables Large-scale Variables 

Species Height
1
 Depth

1
 ED

2
 anhab1km

3
 abow1km

3
 dist2nhab

1
 dist2river

1
 

Pied-billed 

 Grebe  ≥ 0.185   ≥ 34.5   

American 

 Bittern ≥ 0.145   < 16.5  < 15 < 685 

Virginia 

 Rail < 0.445       

 

Sora  ≥ 0.025  < 59.0  < 129 < 469 

Common 

 Gallinule  ≥ 0.235 ≥ 20.8 ≥ 13.5 

< 3.5 or  

≥ 31.0   

American 

 Coot  ≥ 0.235 ≥ 19.0     

Wilson’s 

 Snipe      < 15  

 

Black Tern < 0.185    ≥ 26.5  < 1734 

 

Forster’s Tern < 0.390    ≥ 19.5  < 2690 
1
Variable expressed in meters. 

2
Variable expressed as km of shared water-vegetation border per km

2
. 

3
Variable expressed as the average percent of the area within 1 km of points represented by the 

particular land cover category. 
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Predicted Marsh Bird Distributions 

  We conducted CART analyses using all points and large-scale variables only to identify 

variables that could be used in GIS models to spatially depict the probability of occurrence for 

eight focal species (see Appendix F).  We did not produce distribution maps for Least Bittern 

and Sora.  Least Bittern was not detected often enough to allow CART analysis and only one 

variable was chosen in the Sora CART model, so a useable distribution map could not be 

developed.  Based on survey effort and associated estimates of occupancy, predictive models 

appeared to overestimate distributions of some species (Virginia Rail, American Coot, Wilson’s 

Snipe), underestimate some distributions (Pied-billed Grebe, American Bittern, and Common 

Gallinule), and more accurately represented Black Tern and Forster’s Tern. 

  Several areas were consistently highlighted in distributional maps as having greater 

likelihood of marsh bird occurrence across all species.  Regardless of species and variables used, 

areas having concentrations of large emergent marsh/wet meadow wetlands were pronounced as 

having greater probability of marsh bird occupancy.  The following areas overlapped among 

several models: 1) coastal wetlands of western Lake Erie, St. Clair River Delta, Saginaw Bay, 

northern Lake Huron, St. Mary’s River, and northern Lake Michigan; 2) inland wetlands of the 

east-central Upper Peninsula (e.g., greater Seney NWR area); 3) large inland wetland complexes 

within the Saginaw Bay watershed (e.g., Shiawassee NWR, Shiawassee River State Game Area, 

Crow Island State Game Area); and 4) inland wetland complexes near Houghton Lake, 

Michigan. 
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DISCUSSION 

  We used three approaches (CART, logistic regression, and occupancy) to model 

relationships between marsh bird occurrence and fine- and large-scale covariates.  There was 

substantial variation in results among the three statistical methods, but some general patterns 

emerged.  Models containing both fine- and large-scale variables were better supported by the 

data in most cases.  Other authors have observed that variables at multiple spatial scales can 

influence predictions of marsh bird use (e.g., Rehm and Baldassarre 2007, Bolenbaugh et al. 

2011), but Valente et al. (2011) suggested local variables were most important in predicting 

occupancy of three common breeding species in Louisiana.  Our fine-scale variable only models 

were slightly better on average than large-scale variable only models, suggesting the local-scale 

habitat characteristics may have a somewhat greater degree of control on overall marsh bird 

occurrence.  However, our results also indicate variables at both spatial scales are influencing 

marsh bird occupancy.  Both CART and logistic regression models did well at predicting non-

detection, but CART models were better at predicting species occurrence compared to logistic 

regression for eight of the nine species for which both techniques could be applied.  Better 

performance of the CART models is likely related to fewer constraints on the relationships 

between variables and species occurrence, indicating the non-linear, flexible CART models may 

be more biologically realistic than logistic regression. 

  We observed considerable variation in variables chosen among the three modeling 

techniques, but a few variables were consistently selected by two or three of the analyses.  We 

found many of the variables selected overlapped between logistic regression and CART, but 

logistic regression models tended to contain more variables.  Edge density was the most 

commonly included variable in logistic regression models, but was used less often in CART and 
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occupancy models.  Water depth was a commonly included fine-scale variable among all three 

techniques.  Height was regularly selected in CART models but not in the other analyses.  Two 

variables, non_shal and grass, were regularly included in best-approximating occupancy models, 

but were rarely selected with CART or logistic regression.  In logistic regression models, 

dist2nhab and anhab1km were the large-scale variables selected most often.  Similarly, 

anhab1km was included most often in occupancy models; CART models also regularly selected 

anhab1km and dist2nhab, but abow1km was the large-scale variable included most often.  

Although there was some consistency in the variables included most often in models among the 

three techniques, there often was variation in the species for which the variable was associated.  

For example, depth was a variable in models of six species, but only three species were 

consistent across all three analyses.  Given the variation we observed in three analyses of the 

same data, we suggest employing multiple analytical techniques may be a valuable approach to 

identifying ecological relationships with the most support. 

  Although comparing our results to other research is difficult due to differing variables, 

spatial scales, and statistical techniques, we observed similarities with several studies.  Water 

depth was one of the most regularly used fine-scale variables among all three modeling 

techniques and was consistently a part of Pied-billed Grebe, Common Gallinule, and American 

Coot models.  Jobin et al. (2009) found a positive association between Least Bittern abundance 

and water depth and Tozer et al. (2010) observed similar relationships between water depth and 

abundances of both Least Bittern and Common Gallinule.  Murkin et al. (1997) observed an 

association between American Coot abundance and area of wetland <30 cm in depth.  Lor and 

Malecki (2006) investigated relationships between habitat variables and probability of nesting by 

several marsh birds.  Average water depth was included in their best-approximating American 
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Bittern, Virginia Rail, and Sora models, and vegetation height was a variable in the Virginia Rail 

and Sora models (Lor and Malecki 2006).  Edge density was included in at least one model for 

eight of the 10 species we analyzed.  Measures of interspersion were associated with marsh bird 

abundance or occupancy in several studies (Murkin et al. 1997, Rehm and Baldassarre 2007, 

Darrah and Krementz 2009, Ward et al. 2010, Bolenbaugh et al. 2011). 

  Among the large-scale variables included in our analyses, anhab1km, abow1km, 

dist2nhab, and dist2river, occurred most often in models across all three techniques.  DeLuca et 

al. (2004) observed a negative relationship between the amount of human developed land in the 

surrounding landscape and their index of marsh bird community integrity.  Several researchers 

noted associations between marsh bird metrics or indices of marsh bird communities and the 

amount of emergent/seasonal wetland in the surrounding landscape (Craig and Beal 1992, 

Naugle et al. 1999, Fairbairn and Dinsmore 2001, Rehm and Baldassarre 2007, Smith and Chow-

Fraser 2010) or percentage of open water at the wetland scale (Craig and Beal 1992, Murkin et 

al. 1997, Moore et al. 2009); however, few authors included the amount of open water in the 

surrounding landscape as a variable in their analyses.  We found no other studies that included a 

variable similar to our dist2nhab and only one other study used a distance to river measure 

(O’Neal et al. 2008), but they did not observe an association between the variable and waterbird 

species richness, use days, or waterfowl brood density. 

  Classification and regression tree analysis is an attractive technique, because the result is 

a tree with several nodes and threshold values for the explanatory variables indicating 

associations with greater or lesser occurrence of the species.  These variable thresholds could be 

valuable in guiding management actions or conservation planning, but when management for 

several species (e.g., marsh birds) is the goal, it can be difficult to identify consistent patterns in 
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threshold values for the variables selected.  For example, we observed greater occurrence of 

some species in areas with shorter vegetation, greater water depths, greater edge density, lower 

proportions of human development, greater proportions of open water within 1 km, and shorter 

distances to rivers.  However, these associations were not always consistent among species, with 

sometimes conflicting patterns and widely varying threshold values.  Disparity in variable 

thresholds among species is to be expected because of differing biology.  Evaluating associations 

with a particular variable among multiple species is further complicated by relationships with 

variables in above-connecting nodes and occurrences of the same variable in multiple locations 

of the tree.  Our analyses highlight the difficulty of planning conservation actions for multiple 

species, even when the species of interest use similar habitats.  A better approach may be to 

develop specific conservation recommendations on a species-by-species basis via additional 

analyses.  Once species-specific analyses are completed for several priority species, planning 

could focus on identifying areas of overlap among species, providing heterogeneity within 

wetlands and landscapes, and managing wetland complexes that meet the needs of multiple 

species. 

 

Important Areas for Marsh Bird Conservation 

  We developed GIS models using large-scale variables and threshold values from CART 

analyses to predict the likelihood of occurrence of focal species in Michigan and Ohio.  

Regardless of the species and variables used, there was some spatial overlap among the 

distribution maps in areas identified as having the greatest probability of occurrence.  These 

areas were generally large emergent marsh and/or wet meadow complexes, including Great 

Lakes coastal wetlands and large inland wetland systems in and around Seney NWR, the 
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Saginaw Bay watershed, and near Houghton Lake, Michigan.  Our analysis suggests focusing 

conservation efforts (i.e., wetland protection and restoration) at or near these large wetland 

complexes would likely benefit marsh birds. 

 

Refining Biological Models 

  Preliminary spatially explicit habitat models were developed for breeding JV focal 

species to guide regional marsh bird planning (Soulliere et al. 2007).  However, limited 

population information (see Wires et al. 2010) and lack of species-specific fine-scale and 

landscape habitat features hampered development of correlative models.  These information gaps 

and associated research needs were identified in the JV planning process.  Likewise, expert-

based planning assumptions regarding marsh bird habitat requirements were stated explicitly to 

target future research, as testing these assumptions and filling information gaps is critical to 

strategic habitat conservation.  Our research moves the JV community forward in filling at least 

some marsh bird information gaps during the breeding period.  Results of this study and other 

ongoing research in the region will provide information to refine models used when updating the 

JV Waterbird Habitat Conservation Strategy (completion target 2015). 

 

Research Needs 

  We found several challenges associated with analyzing relationships between marsh bird 

occupancy and independent variables.  The final models produced for a given species regularly 

differed in the variables chosen, yet their predictive capacity was often good and similar.  Thus, 

interpreting which variables are “most important” to a particular species remains difficult, 

despite having models that appear to function well in predicting occupancy.  Our analyses 
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indicated that the process used to select variables to be included in analyses and the modeling 

approach implemented will influence the variables identified as being important, so a remaining 

challenge is developing sound statistical approaches for variable selection and analysis.  When 

modeling occupancy patterns using variables from multiple spatial scales, an issue arises as to 

how best to use data from multiple years at the same location in CART and logistical regression 

analyses.  In these situations, large-scale variables do not vary annually (i.e., remotely sensed 

data are updated at longer time intervals) but fine-scale variables can change annually or even 

within a season.  Additional analyses that build upon this study are needed to further our ability 

to identify the variables driving marsh bird occupancy.   

  Although identification of general habitat associations (i.e., where marsh birds are more 

likely to occur) is an important first step toward more efficient conservation planning, more work 

is needed to better understand the specific breeding habitats being selected by focal species and 

determine if identified habitat associations are indicative of better quality conditions and 

increased recruitment compared to areas selected less often.  Telemetry studies would help us 

move beyond identifying habitat associations to understanding habitat quality (i.e., survival and 

recruitment).  Evaluations of vital rates (e.g., nest success, brood survival) across habitat 

gradients will be critical in determining characteristics of breeding population “source” vs. 

“sink” habitats and enhancing biological models that ultimately increase marsh bird conservation 

efficiency. 

  We focused on habitat variables as drivers of marsh bird occupancy, but clearly there are 

other factors that could be affecting where these species occur.  The presence of nearby 

conspecifics or co-occurrence with other marsh bird species could influence probability of 

occupancy.  Conditions on wintering and/or migration areas could also affect the health (e.g., 
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breeding status) of marsh birds leading up to arrival on summer range and possibly alter site 

selection.  It is also uncertain whether marsh bird species respond to habitat conditions in a 

strong way with little variation, or if there is an element of “chance” to site selection, implying 

there will always be unexplained variation no matter how “good” a predictive model may be.   
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APPENDIX A 

Description of Remotely Sensed Variables 

 



  

 

Variable:  abow1km 

Alias:    Percent (%) aquatic bed / open water wetland within 1,000 meters. 

Description:  Percent (%) of a 1,000 meter circular buffer from the center of a 30 meter cell  

    classified as Palustrine or Lacustrine Aquatic Bed or Open Water wetland from  

    the National Wetlands Inventory Program. 

Data source(s):  National Wetlands Inventory 

Process: 

1. Start with all NWI wetlands within an 18,000 meter full, rounded buffer of the Great Lakes 

coastline including off-shore islands (“All_wetlands.shp”; internal process file).  

2. Select by Attributes all open water and aquatic bed polygons 

a. "ATTRIBUTE" LIKE '0' OR "ATTRIBUTE" LIKE '%USJ%' OR "ATTRIBUTE" 

LIKE '%USK%' OR "ATTRIBUTE" LIKE '%USU%' OR "ATTRIBUTE" LIKE 

'%USW%' OR "ATTRIBUTE" LIKE '%USY%' OR "ATTRIBUTE" LIKE '%PUB%' 

OR "ATTRIBUTE" LIKE '%UBF%' OR "ATTRIBUTE" LIKE '%UBG%' OR 

"ATTRIBUTE" LIKE '%UBH%' OR "ATTRIBUTE" LIKE '%UBJ%' OR 

"ATTRIBUTE" LIKE '%UBK%' OR "ATTRIBUTE" LIKE '%UBZ%' OR 

"ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'L2UB/%' OR 

"ATTRIBUTE" LIKE '%AB%' 

3. Clip to coastal zone extent (18,000 meter full rounded buffer of the Great Lakes coastline 

including off-shore islands; “CoastalZone.shp”; internal process file) 

4. Select by Attributes all Palustrine and Lacustrine littoral wetlands 

a. "ATTRIBUTE" LIKE 'L2%' Or "ATTRIBUTE" LIKE 'P%' 

5. Convert Feature to Raster; Output cell size = 10 meters, Value = 100. 

6. Integer raster to convert raster to integer format. 

7. Reclassify raster (100 100; NoData 0). Creates a binary raster were aquatic bed / open water 

wetland = 100 and everything else = 0. 

8. Focal Statistics; Circle, Radius = 100 map units (meters), Statistics type=Mean, Ignore 

NoData in calculations = TRUE. 

 

Variable:  anhab1km 

Alias:    Percent (%) anthropogenic non-habitat within 1,000 meters. 

Description:  Percent (%) of a 1,000 meter circular buffer from the center of a 30 meter cell  

    classified as Developed (Open Space, Low Intensity, Medium Intensity, and  

    High Intensity) or Cultivated Crops in the 2006 National Land Cover Dataset. 

Data source(s):  National Land Cover Dataset, 2006. 

Process: 

1. Start with all NWI wetlands within an 12,000 meter full, rounded buffer of Michigan and 

Ohio.  

2. Select by Attributes all open water and aquatic bed polygons 



  

 

a. "ATTRIBUTE" LIKE '0' OR "ATTRIBUTE" LIKE '%USJ%' OR "ATTRIBUTE" 

LIKE '%USK%' OR "ATTRIBUTE" LIKE '%USU%' OR "ATTRIBUTE" LIKE 

'%USW%' OR "ATTRIBUTE" LIKE '%USY%' OR "ATTRIBUTE" LIKE '%PUB%' 

OR "ATTRIBUTE" LIKE '%UBF%' OR "ATTRIBUTE" LIKE '%UBG%' OR 

"ATTRIBUTE" LIKE '%UBH%' OR "ATTRIBUTE" LIKE '%UBJ%' OR 

"ATTRIBUTE" LIKE '%UBK%' OR "ATTRIBUTE" LIKE '%UBZ%' OR 

"ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'L2UB/%' OR 

"ATTRIBUTE" LIKE '%AB%' 

3. Clip to coastal zone extent (18,000 meter full rounded buffer of the Great Lakes coastline 

including off-shore islands; “CoastalZone.shp”; internal process file) 

4. Select by Attributes all Palustrine and Lacustrine littoral wetlands 

a. "ATTRIBUTE" LIKE 'L2%' Or "ATTRIBUTE" LIKE 'P%' 

5. Convert Feature to Raster; Output cell size = 10 meters, Value = 100. 

6. Integer raster to convert raster to integer format. 

7. Reclassify raster (100 100; NoData 0). Creates a binary raster were aquatic bed / open water 

wetland = 100 and everything else = 0. 

 

8.  Focal Statistics; Circle, Radius = 1000 map units (meters), Statistics type=Mean, Ignore 

NoData in calculations = TRUE. 

 

Variable:  dist2abow 

Alias:    Distance (meters) to river. 

 Description:  Euclidean distance (meters) from the edge of a 30 m cell to another 30 m cell 

classified as Palustrine or Lacustrine Aquatic Bed or Open Water wetland from 

the National Wetlands Inventory. 

Data source(s):  National Wetlands Inventory 

Process: 

 1-7. the same as abow1km 

8. Aggregate; Cell factor = 3, Aggregation technique = Mean; Expand extent if needed = TRUE, 

Ignore NoData in calculations = TRUE 

9. Euclidean Distance; Maximum distance = 12000, Output cell size = 30, Output direction 

raster = NULL 

 

Variable:  dist2nhab 

Alias:    Distance (meters) to nearest non-habitat. 

Description:  Euclidean distance (meters) from the edge of a 30 m cell to another 30 m cell  

    classified as Perennial Ice/Snow, Developed (Open Space, Low Intensity,  

    Medium Intensity, and High Intensity), Barren Land, Deciduous Forest,   



  

 

    Evergreen Forest, Mixed Forest, and Cultivated Crops in the 2006 National Land  

    Cover Dataset. 

Data source(s):  National Land Cover Dataset, 2006. 

Process: 

1. Start with NLCD extracted to 18,000 meter full rounded buffer of Great Lakes coastline 

including off-shore islands (“nlcd_18km”; internal process file). 

2. Reclassify (1); (11 NoData; 12 1; 21 1; 22 1; 23 1; 24 1; 31 1; 41 1; 42 1; 43 1; 52 NoData; 

71 NoData; 81 NoData; 82 1; 90 NoData; 95 NoData; NoData NoData); Change Missing 

values to NoData=TRUE. 

3. Euclidean Distance; Maximum distance = 12000, Output cell size = 30, Output direction 

raster = NULL 

 

Variable:  dist2rd 

Alias:    Distance (meters) to nearest road. 

Description:  Euclidean distance (meters) from the edge of a 30 m cell to the nearest Census  

    2010 TIGER/Line® road vector. 

Data source(s):  Census 2010 TIGER/Line® Shapefiles 

Process: 

1. Start with all Census 2010 TIGER/Line® roads  in a 12,000 m full, rounded buffer of 

Michigan and Ohio 

2. Euclidean Distance, Maximum distance = 12000, Output cell size = 30, Output direction 

raster = NULL 

 

Variable:  dist2river 

Alias:    Distance (meters) to nearest river. 

Description:  Euclidean distance (meters) from the edge of a 30 m cell to the nearest National  

    Hydrography Dataset stream/river vector. 

Data source(s):  National Hydrography Dataset high resolution state extracts. 

Process: 

1. Start with all NHD Stream/River (FType=460) within a full, rounded 12,000 m buffer of  

Michigan and Ohio 

2. Euclidean Distance, Maximum distance = 12000, Output cell size = 30, Output direction 

raster = NULL 

 



  

 

Variable:  ED 

Alias:    Edge density (km/km
2
) 

Description:  Line density (km/km
2
) of water/vegetation shared border derived from   

    interactive supervised classification of color infrared imagery (see Appendix B).  

Data source(s):  Color infrared imagery (2009 and 2010, NAIP); National Wetlands Inventory 

Process: 

1. Start with 1 m resolution binary raster of water (1) and vegetation (2); this is the result of step 

16 from the interactive supervised image classification process (Appendix B) 

2. Extract (1) to 100 m circular buffers centered at survey locations. 

3. Create a Raster Domain of (2) 

4. Reclassify raster (2) (1 1; 2 NoData; NoData NoData). This creates a binary raster where 

water = 1 and everything else = NoData. 

5. Convert Raster to Polygon; Field = Value, Simplify polygons = FALSE. This converts the 

raster into contiguous polygons. 

6. Convert Polygon to Line. 

7. Calculate Line Density; Population field = NONE, Output cell size = 1; Search radius = 100; 

Area units = SQUARE_KILOMETERS. Limit calculation to extent of survey site buffers (3). 

The result is density (km/km
2
) of vegetation/water interface within a 100 meter circular 

buffer centered at a survey location. 

 

Variable:  emnofor1km 

Alias:    Percent (%) emergent wetland within 1,000 meters. 

Description:  Percent (%) of a 1,000 meter circular buffer from the center of a 30 meter cell  

    classified as Emergent wetland from the National Wetlands Inventory Program. 

Data source(s):  National Wetlands Inventory 

Process: 

1. Start with all NWI wetlands within a 12,000 meter full, rounded buffer of Michigan and Ohio  

2. Select by Attributes all emergent polygons 

a. ATTRIBUTE LIKE '%EM%' 

3. Remove forested wetlands from selection 

a. ATTRIBUTE LIKE '%FO%' 

4. Clip to study area  

5. Convert Feature to Raster; Output cell size = 10 meters, Value = 100. 

6. Integer raster to convert raster to integer format. 

 

7. Focal Statistics; Circle, Radius = 1,000 map units (meters), Statistics type=Mean, Ignore 

NoData in calculations = TRUE. 

 



  

 

Variable:  nnhab1km 

Alias:    Percent (%) natural non-habitat within 1,000 meters. 

Description:  Percent (%) of a 1,000 meter circular buffer from the center of a 30 m cell  

    classified as Perennial Ice/Snow, Barren Land, Deciduous Forest, Evergreen  

    Forest, Mixed Forest, and Cultivated Crops in the 2006 National Land Cover  

    Dataset. 

Data source(s):  National Land Cover Dataset, 2006. 

Process: 

1. Start with NLCD extracted to 12,000 meter full, rounded buffer of Michigan and Ohio 

2. Reclassify (1); (11 0; 12 100; 21 0; 22 0; 23 0; 24 0; 31 100; 41 100; 42 100; 43 100; 52 0; 71 

0; 81 0; 82 100; 90 0; 95 0; NoData NoData); Change Missing values to NoData=TRUE. 

3. Focal Statistics; Circle, Radius = 1000 map units (meters), Statistics type=Mean, Ignore 

NoData in calculations = TRUE. 

 

Variable:  NVEG 

Alias:    Number of vegetation patches within 100 meters. 

Description:  Number of unique, contiguous groups of 1 m cells classified as emergent  

    vegetation through interactive supervised classification of color infrared   

    imagery (see Appendix B) within a 100 meter circular buffer centered at a  

    survey location. 

Data source(s):  Color infrared imagery (2009 and 2010, NAIP); National Wetlands Inventory 

Process: 

1. Start with 1 m resolution binary raster of water (1) and vegetation (2); this is the result of step 

16 from the interactive supervised image classification process (Appendix B) 

2. Extract (1) to 100 m circular buffers centered at survey locations. 

3. Create a Raster Domain of (2) 

4. Reclassify raster (2) (1 NoData; 2 1; NoData NoData).  

5. Raster to Polygon; Field = Value, Simplify polygons = FALSE. This converts the raster into a 

vector file and groups contiguous cells together into unique polygons. 

6. Polygon to Raster; Value field = OBJECTID, Cell assignment type = CELL_CENTER, 

Priority field = NONE, Cellsize = 1; This generates an integer raster where  

7. Focal Stats; Neighborhood = Circle, Radius = 100 map units (meters), Statistics type = 

VARIETY, Ignore NoData in calculations = TRUE. Limit calculation to extent of survey site 

buffers (3). 

 



  

 

Variable:  RATIO 

Alias:    Ratio of vegetation to open water area within 100 meters. 

Description:  Ratio of the area of 1 m cells classified as emergent vegetation to the area of 1  

    m cells classified as water (both derived through interactive supervised image  

    classification of color infrared imagery; see Appendix B) within a 100 meter  

    circular buffer centered at a survey location. 

Data source(s):  Color infrared imagery (2009 and 2010, NAIP); National Wetlands Inventory 

Process: 

1. Start with 1 m resolution binary raster of water (1) and vegetation (2); this is the result of step 

16 from the interactive supervised image classification process (Appendix B) 

2. Extract (1) to 100 m circular buffers centered at survey locations. 

3. Create a Raster Domain of (2) 

4. Reclassify raster (2) (1 0; 2 100; NoData NoData). This create a binary raster where water = 0 

and emergent vegetation = 100. 

5. Focal Stats; Neighborhood = Circle, Radius = 100 map units (meters), Statistics type = 

MEAN, Ignore NoData in calculations = TRUE. Limit calculation to extent of survey site 

buffers (3). This results in percent (%) emergent vegetation within a 100 meter buffer 

centered at a survey location. 

6. Convert to RATIO via Raster Calculator 

a. Abs("%Output Ratio GRID name%"-50)*2 

 



  

 

APPENDIX B 

 

Process Used to Classify Color Infrared Imagery 

 



  

 

Classifying open water versus vegetation in wetlands from aerial imagery. 

 

1. Zoom in to area of interest.  Leave a buffer of >1000 m from survey points to edge of 

screen extent. 

2. Export image file (.ecw or .sid) to grid.  Make sure to export with the “use current extent” 

option selected. 

3. Select NWI polygons that occur in the area of interest. 

4. Export selected NWI polygons. 

5. Use Extract by Mask to clip the image file to NWI polygons. 

a. Creates a multiband raster and a file for each individual band. 

6. Open the image classification toolbar. 

7. Open the Training Sample manager. 

8. Select and draw open water training sites. 

a. Band 4 (infrared) is best for distinguishing water (it will appear dark gray to 

black). 

b. Select at least 1,000,000 pixels distributed throughout the image. 

c. Collapse training sites into a single class, assign class name “Water” and value 

“1”. 

9. Select and draw vegetation training sites. 

a. Vegetation will appear as lighter colors when using Band 4.  True color or color 

composites can sometimes help. 

b. Select at least 1,000,000 pixels distributed throughout the image. 

c. Collapse training sites into a single class: assign class name “Vegetation” and 

value “2”. 

10.  Save training sites. 

11.  Set the image file that you would like to classify in the image classification toolbar. 

a. Try classifications with both the multiband image and just using Band 4. 

12.  Click “Interactive Supervised Classification”. 

13.  Compare classification with base image (swipe tool on the effects toolbar is useful for 

this assessment). 

14.  Export raw classification or if classification is poor, add, delete, or change training sites. 

15.  Run a Majority Filter on raw classification (8 cell, majority). 

16.  Save as classified.  



  

 

APPENDIX C 

Occupancy Modeling Results 

 



  

 

Table C-1.  Occupancy model selection results for 10 marsh bird species during 518 point counts 

conducted in Michigan during 2006—2013.  Detection probability (p) and occupancy (ψ) 

covariates are coded as follows: AN1 = proportion of anthropogenic cover within 1 km; DE = 

water depth; D2NH = distance to nearest natural non-habitat; D2RD = distance to nearest road; 

D2OW1 = distance to nearest open water/aquatic bed wetland; CA = % cover Carex (Sedges); 

ED = edge density within 100 m; EM = % cover emergents; EM1 = proportion of emergent 

wetland within 1 km; FL = % cover floating vegetation; GR = % cover grasses; HE = maximum 

vegetation height; NS = % cover non-persistent shallow-water emergents; NV = no. vegetation 

patches within 100 m; OR = organic sediment depth; OW1 = proportion of open water/aquatic 

bed wetlands within 1 km; PH = % cover Phragmites australis (common reed); RA = ratio of 

emergent:open water/aquatic bed wetland within 100 m; SC = % cover Schoenoplectus 

(bulrushes); TY = % cover Typha (cattails); and WO = % cover woody vegetation. 

 

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

Pied-billed Grebe (ĉ = 0.89) 

      ψ(DE,ED,NS),p(SU,EM) 432.58 0.00 0.9089 1.0000 8 416.58 

ψ(ED,NS),p(SU,EM) 437.59 5.01 0.0742 0.0817 7 423.59 

ψ(DE,ED),p(SU,EM) 441.93 9.35 0.0085 0.0093 7 427.93 

ψ(DE,NS),p(SU,EM) 442.07 9.49 0.0079 0.0087 7 428.07 

ψ(DE),p(SU,EM) 447.78 15.20 0.0005 0.0005 6 435.78 

ψ(ED),p(SU,EM) 455.38 22.80 0.0000 0.0000 6 443.38 

ψ(NS),p(SU,EM) 460.06 27.48 0.0000 0.0000 6 448.06 

ψ(EM),p(SU,EM) 460.77 28.19 0.0000 0.0000 6 448.77 

ψ(CA),p(SU,EM) 463.10 30.52 0.0000 0.0000 6 451.10 

ψ(RA),p(SU,EM) 466.29 33.71 0.0000 0.0000 6 454.29 

ψ(WO),p(SU,EM) 472.40 39.82 0.0000 0.0000 6 460.40 

ψ(GR),p(SU,EM) 472.75 40.17 0.0000 0.0000 6 460.75 

ψ(OW1),p(SU,ME) 473.32 40.74 0.0000 0.0000 6 461.32 

ψ(OR),p(SU,EM) 473.60 41.02 0.0000 0.0000 6 461.60 

ψ(FL),p(SU,EM) 473.62 41.04 0.0000 0.0000 6 461.62 

ψ(NV),p(SU,EM) 475.29 42.71 0.0000 0.0000 6 463.29 

ψ(SC),p(SU,EM) 475.88 43.30 0.0000 0.0000 6 463.88 

ψ(HE),p(SU,EM) 477.08 44.50 0.0000 0.0000 6 465.08 

ψ(.),p(SU,EM) 477.75 45.17 0.0000 0.0000 5 467.75 

ψ(EM1),p(SU,EM) 478.01 45.43 0.0000 0.0000 6 466.01 

ψ(TY),p(SU,EM) 478.03 45.45 0.0000 0.0000 6 466.03 

ψ(AN1),p(SU,EM) 478.44 45.86 0.0000 0.0000 6 466.44 

ψ(D2RD),p(SU,EM) 478.89 46.31 0.0000 0.0000 6 466.89 

ψ(D2NH),p(SU,EM) 479.22 46.64 0.0000 0.0000 6 467.22 

ψ(PH),p(SU,EM) 479.50 46.92 0.0000 0.0000 6 467.50 

ψ(D2OW),p(SU,EM) 479.67 47.09 0.0000 0.0000 6 467.67 

ψ(D2RI),p(SU,EM) 479.75 47.17 0.0000 0.0000 6 467.75 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(.),p(SU,NO) 485.77 53.19 0.0000 0.0000 5 475.77 

ψ(.),p(SU,WI) 489.05 56.47 0.0000 0.0000 5 479.05 

ψ(.),p(SU,HE) 490.73 58.15 0.0000 0.0000 5 480.73 

ψ(.),p(SU) 493.83 61.25 0.0000 0.0000 4 485.83 

ψ(.),p(.) 494.33 61.75 0.0000 0.0000 2 490.33 

       

American Bittern (ĉ = 1.11)       

ψ(EM1,D2NH,NS),p(SU,HE) 627.79 0.00 0.5922 1.0000 8 678.78 

ψ(EM1,D2NH),p(SU,HE) 628.64 0.85 0.3871 0.6538 7 681.94 

ψ(EM1,NS),p(SU,HE) 636.25 8.46 0.0086 0.0146 7 690.39 

ψ(EM1),p(SU,HE) 636.62 8.83 0.0072 0.0121 6 693.02 

ψ(D2NH,NS),p(SU,HE) 637.78 9.99 0.0040 0.0068 7 692.08 

ψ(D2NH),p(SU,HE) 640.93 13.14 0.0008 0.0014 6 697.80 

ψ(NS),p(SU,HE) 647.95 20.16 0.0000 0.0000 6 705.59 

ψ(GR),p(SU,HE) 648.33 20.54 0.0000 0.0000 6 706.01 

ψ(DE),p(SU,HE) 650.19 22.40 0.0000 0.0000 6 708.07 

ψ(OR),p(SU,HE) 650.81 23.02 0.0000 0.0000 6 708.76 

ψ(TY),p(SU,HE) 651.00 23.21 0.0000 0.0000 6 708.97 

ψ(HE),p(SU,HE) 651.92 24.13 0.0000 0.0000 6 709.99 

ψ(D2OW),p(SU,HE) 652.34 24.55 0.0000 0.0000 6 710.46 

ψ(.),p(SU,HE) 652.88 25.09 0.0000 0.0000 5 713.27 

ψ(AN1),p(SU,HE) 653.55 25.76 0.0000 0.0000 6 711.80 

ψ(.),p(SU) 653.62 25.83 0.0000 0.0000 4 716.32 

ψ(.),p(SU,WI) 653.66 25.87 0.0000 0.0000 5 714.14 

ψ(OW1),p(SU,HE) 653.83 26.04 0.0000 0.0000 6 712.11 

ψ(PH),p(SU,HE) 654.03 26.24 0.0000 0.0000 6 712.33 

ψ(D2RI),p(SU,HE) 654.14 26.35 0.0000 0.0000 6 712.45 

ψ(FL),p(SU,HE) 654.24 26.45 0.0000 0.0000 6 712.57 

ψ(NV),p(SU,HE) 654.29 26.50 0.0000 0.0000 6 712.62 

ψ(EM),p(SU,HE) 654.44 26.65 0.0000 0.0000 6 712.79 

ψ(RA),p(SU,HE) 654.56 26.77 0.0000 0.0000 6 712.92 

ψ(CA),p(SU,HE) 654.60 26.81 0.0000 0.0000 6 712.97 

ψ(D2RD),p(SU,HE) 654.70 26.91 0.0000 0.0000 6 713.08 

ψ(ED),p(SU,HE) 654.87 27.08 0.0000 0.0000 6 713.26 

ψ(WO),p(SU,HE) 654.88 27.09 0.0000 0.0000 6 713.27 

ψ(SC),p(SU,HE) 654.88 27.09 0.0000 0.0000 6 713.27 

ψ(.),p(SU,NO) 655.48 27.69 0.0000 0.0000 5 716.16 

ψ(.),p(SU,EM) 655.49 27.70 0.0000 0.0000 5 716.17 

ψ(.),p(.) 663.19 35.40 0.0000 0.0000 2 731.37 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

Least Bittern (ĉ = 0.93) 

      ψ(DE,TY),p(SU,HE) 444.22 0.00 0.3562 1.0000 7 430.22 

ψ(DE,TY,NS),p(SU,HE) 444.32 0.10 0.3388 0.9512 8 428.32 

ψ(DE),p(SU,HE) 445.74 1.52 0.1666 0.4677 6 433.74 

ψ(DE,NS),p(SU,HE) 446.11 1.89 0.1384 0.3887 7 432.11 

ψ(TY,NS),p(SU,HE) 462.06 17.84 0.0000 0.0001 7 448.06 

ψ(TY),p(SU,HE) 466.88 22.66 0.0000 0.0000 6 454.88 

ψ(NS),p(SU,HE) 474.85 30.63 0.0000 0.0000 6 462.85 

ψ(D2NH),p(SU,HE) 478.20 33.98 0.0000 0.0000 6 466.20 

ψ(CA),p(SU,HE) 479.44 35.22 0.0000 0.0000 6 467.44 

ψ(EM1),p(SU,HE) 480.46 36.24 0.0000 0.0000 6 468.46 

ψ(AN1),p(SU,HE) 481.95 37.73 0.0000 0.0000 6 469.95 

ψ(EM),p(SU,HE) 483.74 39.52 0.0000 0.0000 6 471.74 

ψ(GR),p(SU,HE) 484.73 40.51 0.0000 0.0000 6 472.73 

ψ(SC),p(SU,HE) 485.42 41.20 0.0000 0.0000 6 473.42 

ψ(D2OW),p(SU,HE) 485.74 41.52 0.0000 0.0000 6 473.74 

ψ(FL),p(SU,HE) 486.12 41.90 0.0000 0.0000 6 474.12 

ψ(D2RD),p(SU,HE) 487.74 43.52 0.0000 0.0000 6 475.74 

ψ(WO),p(SU,HE) 488.26 44.04 0.0000 0.0000 6 476.26 

ψ(OW1),p(SU,HE) 488.94 44.72 0.0000 0.0000 6 476.94 

ψ(.),p(SU,HE) 489.29 45.07 0.0000 0.0000 5 479.29 

ψ(ED),p(SU,HE) 489.45 45.23 0.0000 0.0000 6 477.45 

ψ(HE),p(SU,HE) 490.08 45.86 0.0000 0.0000 6 478.08 

ψ(PH),p(SU,HE) 490.24 46.02 0.0000 0.0000 6 478.24 

ψ(RA),p(SU,HE) 490.39 46.17 0.0000 0.0000 6 478.39 

ψ(NV),p(SU,HE) 491.07 46.85 0.0000 0.0000 6 479.07 

ψ(D2RI),p(SU,HE) 491.12 46.90 0.0000 0.0000 6 479.12 

ψ(OR),p(SU,HE) 491.16 46.94 0.0000 0.0000 6 479.16 

ψ(.),p(SU,EM) 492.74 48.52 0.0000 0.0000 5 482.74 

ψ(.),p(SU,WI) 494.24 50.02 0.0000 0.0000 5 484.24 

ψ(.),p(SU,NO) 496.93 52.71 0.0000 0.0000 5 486.93 

ψ(.),p(SU) 500.48 56.26 0.0000 0.0000 4 492.48 

ψ(.),p(.) 504.01 59.79 0.0000 0.0000 2 500.01 

       

Virginia Rail (ĉ = 1.25) 

      ψ(GR,EM1,AN1),p(HE) 811.27 0.00 0.9929 1.0000 6 1001.65 

ψ(GR,AN1),p(HE) 822.63 11.36 0.0034 0.0034 5 1018.39 

ψ(GR,EM1),p(HE) 823.28 12.01 0.0024 0.0025 5 1019.20 

ψ(EM1,AN1),p(HE) 824.64 13.37 0.0012 0.0012 5 1020.91 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(GR),p(HE) 836.53 25.26 0.0000 0.0000 4 1038.31 

ψ(EM1),p(HE) 838.19 26.92 0.0000 0.0000 4 1040.40 

ψ(AN1),p(HE) 841.01 29.74 0.0000 0.0000 4 1043.93 

ψ(CA),p(HE) 842.51 31.24 0.0000 0.0000 4 1045.81 

ψ(DE),p(HE) 842.61 31.34 0.0000 0.0000 4 1045.93 

ψ(FL),p(HE) 842.65 31.38 0.0000 0.0000 4 1045.98 

ψ(EM),p(HE) 846.80 35.53 0.0000 0.0000 4 1051.18 

ψ(HE),p(HE) 846.83 35.56 0.0000 0.0000 4 1051.22 

ψ(WO),p(HE) 847.07 35.80 0.0000 0.0000 4 1051.52 

ψ(NS),p(HE) 850.95 39.68 0.0000 0.0000 4 1056.39 

ψ(TY),p(HE) 852.94 41.67 0.0000 0.0000 4 1058.88 

ψ(NV),p(HE) 855.23 43.96 0.0000 0.0000 4 1061.75 

ψ(SC),p(HE) 855.99 44.72 0.0000 0.0000 4 1062.70 

ψ(OR),p(HE) 856.51 45.24 0.0000 0.0000 4 1063.35 

ψ(OW1),p(HE) 856.51 45.24 0.0000 0.0000 4 1063.35 

ψ(D2NH),p(HE) 857.49 46.22 0.0000 0.0000 4 1064.58 

ψ(.),p(HE) 857.95 46.68 0.0000 0.0000 3 1067.67 

ψ(D2RD),p(HE) 858.07 46.80 0.0000 0.0000 4 1065.31 

ψ(D2RI),p(HE) 858.30 47.03 0.0000 0.0000 4 1065.60 

ψ(RA),p(HE) 858.53 47.26 0.0000 0.0000 4 1065.88 

ψ(D2OW),p(HE) 859.53 48.26 0.0000 0.0000 4 1067.14 

ψ(PH),p(HE) 859.69 48.42 0.0000 0.0000 4 1067.34 

ψ(ED),p(HE) 859.78 48.51 0.0000 0.0000 4 1067.45 

ψ(.),p(EM) 861.68 50.41 0.0000 0.0000 3 1072.34 

ψ(.),p(WI) 862.22 50.95 0.0000 0.0000 3 1073.01 

ψ(.),p(.) 862.29 51.02 0.0000 0.0000 2 1075.61 

ψ(.),p(NO) 864.28 53.01 0.0000 0.0000 3 1075.60 

ψ(.),p(SU) 865.24 53.97 0.0000 0.0000 4 1074.29 

       

Sora (ĉ = 2.34) 

      ψ(AN1),p(SU) 243.15 0.00 0.1390 1.0000 5 545.71 

ψ(AN1,ED),p(SU) 243.90 0.75 0.0956 0.6873 6 542.78 

ψ(AN1,DE),p(SU) 244.26 1.11 0.0798 0.5741 6 543.63 

ψ(AN1,DE,ED),p(SU) 244.30 1.15 0.0782 0.5627 7 539.03 

ψ(DE,ED),p(SU) 245.10 1.95 0.0524 0.3772 6 545.59 

ψ(.),p(SU) 245.66 2.51 0.0396 0.2851 4 556.27 

ψ(DE),p(SU) 245.86 2.71 0.0359 0.2579 5 552.06 

ψ(ED),p(SU) 245.96 2.81 0.0341 0.2454 5 552.28 

ψ(TY),p(SU) 246.45 3.30 0.0267 0.1920 5 553.44 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(OR),p(SU) 246.49 3.34 0.0262 0.1882 5 553.53 

ψ(D2RD),p(SU) 246.54 3.39 0.0255 0.1836 5 553.65 

ψ(EM1),p(SU) 246.63 3.48 0.0244 0.1755 5 553.85 

ψ(FL),p(SU) 246.64 3.49 0.0243 0.1746 5 553.87 

ψ(CA),p(SU) 246.79 3.64 0.0225 0.1620 5 554.23 

ψ(OW1),p(SU) 246.80 3.65 0.0224 0.1612 5 554.25 

ψ(WO),p(SU) 246.86 3.71 0.0218 0.1565 5 554.39 

ψ(NV),p(SU) 246.88 3.73 0.0215 0.1549 5 554.44 

ψ(RA),p(SU) 246.99 3.84 0.0204 0.1466 5 554.70 

ψ(EM),p(SU) 247.08 3.93 0.0195 0.1402 5 554.90 

ψ(PH),p(SU) 247.09 3.94 0.0194 0.1395 5 554.94 

ψ(GR),p(SU) 247.32 4.17 0.0173 0.1243 5 555.47 

ψ(.),p(SU,WI) 247.40 4.25 0.0166 0.1194 5 555.65 

ψ(NS),p(SU) 247.43 4.28 0.0164 0.1177 5 555.72 

ψ(D2OW),p(SU) 247.53 4.38 0.0156 0.1119 5 555.97 

ψ(.),p(SU,HE) 247.55 4.40 0.0154 0.1108 5 556.02 

ψ(.),p(SU,EM) 247.57 4.42 0.0153 0.1097 5 556.06 

ψ(D2RI),p(SU) 247.57 4.42 0.0153 0.1097 5 556.06 

ψ(D2NH),p(SU) 247.61 4.46 0.0149 0.1075 5 556.15 

ψ(SC),p(SU) 247.63 4.48 0.0148 0.1065 5 556.20 

ψ(.),p(SU,NO) 247.64 4.49 0.0147 0.1059 5 556.22 

ψ(HE),p(SU) 247.66 4.51 0.0146 0.1049 5 556.26 

ψ(.),p(.) 279.26 36.11 0.0000 0.0000 2 644.27 

       

Common Gallinule (ĉ = 1.72) 

      ψ(DE,AN1,GR),p(SU,EM) 221.11 0.00 0.7751 1.0000 8 353.05 

ψ(DE,GR),p(SU,EM) 224.83 3.72 0.1207 0.1557 7 362.91 

ψ(DE,AN1),p(SU,EM) 225.78 4.67 0.0750 0.0968 7 364.54 

ψ(AN1,GR),p(SU,EM) 228.23 7.12 0.0220 0.0284 7 368.76 

ψ(DE),p(SU,EM) 230.70 9.59 0.0064 0.0083 6 376.45 

ψ(AN1),p(SU,EM) 236.57 15.46 0.0003 0.0004 6 386.55 

ψ(GR),p(SU,EM) 237.81 16.70 0.0002 0.0002 6 388.68 

ψ(WO),p(SU,EM) 239.37 18.26 0.0001 0.0001 6 391.38 

ψ(CA),p(SU,EM) 239.76 18.65 0.0001 0.0001 6 392.04 

ψ(ED),p(SU,EM) 241.30 20.19 0.0000 0.0000 6 394.69 

ψ(FL),p(SU,EM) 242.62 21.51 0.0000 0.0000 6 396.96 

ψ(EM),p(SU,EM) 243.72 22.61 0.0000 0.0000 6 398.86 

ψ(NS),p(SU,EM) 244.03 22.92 0.0000 0.0000 6 399.40 

ψ(TY),p(SU,EM) 245.97 24.86 0.0000 0.0000 6 402.74 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(EM1),p(SU,EM) 247.36 26.25 0.0000 0.0000 6 405.13 

ψ(RA),p(SU,EM) 249.77 28.66 0.0000 0.0000 6 409.27 

ψ(.),p(SU,EM) 249.83 28.72 0.0000 0.0000 5 412.82 

ψ(PH),p(SU,EM) 249.97 28.86 0.0000 0.0000 6 409.62 

ψ(OR),p(SU,EM) 251.16 30.05 0.0000 0.0000 6 411.67 

ψ(SC),p(SU,EM) 251.17 30.06 0.0000 0.0000 6 411.68 

ψ(D2RD),p(SU,EM) 251.20 30.09 0.0000 0.0000 6 411.74 

ψ(NV),p(SU,EM) 251.44 30.33 0.0000 0.0000 6 412.15 

ψ(HE),p(SU,EM) 251.60 30.49 0.0000 0.0000 6 412.42 

ψ(D2NH),p(SU,EM) 251.75 30.64 0.0000 0.0000 6 412.68 

ψ(D2OW),p(SU,EM) 251.78 30.67 0.0000 0.0000 6 412.73 

ψ(D2RI),p(SU,EM) 251.81 30.70 0.0000 0.0000 6 412.78 

ψ(OW1),p(SU,EM) 251.83 30.72 0.0000 0.0000 6 412.82 

ψ(.),p(SU,WI) 252.33 31.22 0.0000 0.0000 5 417.13 

ψ(.),p(.) 256.30 35.19 0.0000 0.0000 2 434.29 

ψ(.),p(SU,NO) 256.31 35.20 0.0000 0.0000 5 423.97 

ψ(.),p(SU) 257.04 35.93 0.0000 0.0000 4 428.68 

ψ(.),p(SU,HE) 258.29 37.18 0.0000 0.0000 5 427.38 

       

American Coot (ĉ = 1.36) 

      ψ(DE,GR,CA),p(SU,NO) 439.64 0.00 0.9937 1.0000 8 577.25 

ψ(DE,CA),p(SU,NO) 450.37 10.73 0.0046 0.0047 7 594.60 

ψ(DE,GR),p(SU,NO) 452.49 12.85 0.0016 0.0016 7 597.49 

ψ(GR,CA),p(SU,NO) 458.23 18.59 0.0001 0.0001 7 605.31 

ψ(DE),p(SU,NO) 469.20 29.56 0.0000 0.0000 6 622.98 

ψ(GR),p(SU,NO) 478.29 38.65 0.0000 0.0000 6 635.37 

ψ(CA),p(SU,NO) 479.08 39.44 0.0000 0.0000 6 636.45 

ψ(WO),p(SU,NO) 481.20 41.56 0.0000 0.0000 6 639.33 

ψ(EM),p(SU,NO) 482.45 42.81 0.0000 0.0000 6 641.04 

ψ(NS),p(SU,NO) 492.60 52.96 0.0000 0.0000 6 654.87 

ψ(ED),p(SU,NO) 493.38 53.74 0.0000 0.0000 6 655.93 

ψ(HE),p(SU,NO) 499.20 59.56 0.0000 0.0000 6 663.86 

ψ(RA),p(SU,NO) 500.46 60.82 0.0000 0.0000 6 665.57 

ψ(SC),p(SU,NO) 505.84 66.20 0.0000 0.0000 6 672.90 

ψ(OW1),p(SU,NO) 507.02 67.38 0.0000 0.0000 6 674.52 

ψ(FL),p(SU,NO) 508.05 68.41 0.0000 0.0000 6 675.92 

ψ(EM1),p(SU,NO) 509.13 69.49 0.0000 0.0000 6 677.39 

ψ(D2RD),p(SU,NO) 510.40 70.76 0.0000 0.0000 6 679.12 

ψ(OR),p(SU,NO) 510.88 71.24 0.0000 0.0000 6 679.78 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(AN1),p(SU,NO) 511.31 71.67 0.0000 0.0000 6 680.36 

ψ(D2RI),p(SU,NO) 511.61 71.97 0.0000 0.0000 6 680.77 

ψ(.),p(SU,NO) 512.13 72.49 0.0000 0.0000 5 684.20 

ψ(PH),p(SU,NO) 513.76 74.12 0.0000 0.0000 6 683.70 

ψ(D2OW),p(SU,NO) 513.83 74.19 0.0000 0.0000 6 683.79 

ψ(D2NH),p(SU,NO) 513.94 74.30 0.0000 0.0000 6 683.95 

ψ(TY),p(SU,NO) 513.99 74.35 0.0000 0.0000 6 684.01 

ψ(NV),p(SU,NO) 514.07 74.43 0.0000 0.0000 6 684.12 

ψ(.),p(SU,EM) 527.50 87.86 0.0000 0.0000 5 705.15 

ψ(.),p(SU,HE) 534.50 94.86 0.0000 0.0000 5 714.68 

ψ(.),p(SU) 537.18 97.54 0.0000 0.0000 4 721.06 

ψ(.),p(.) 538.78 99.14 0.0000 0.0000 2 728.69 

ψ(.),p(SU,WI) 539.17 99.53 0.0000 0.0000 5 721.05 

       

Wilson’s Snipe (ĉ = 2.22) 

      ψ(CA,D2RD),p(SU,NO) 117.41 0.00 0.2807 1.0000 7 229.24 

ψ(CA),p(SU,NO) 117.68 0.27 0.2452 0.8737 6 234.26 

ψ(CA,D2RD,TY),p(SU,NO) 118.72 1.31 0.1458 0.5194 8 227.71 

ψ(CA,TY),p(SU,NO) 118.89 1.48 0.1339 0.4771 7 232.51 

ψ(D2RD,TY),p(SU,NO) 121.22 3.81 0.0418 0.1488 7 237.67 

ψ(D2RD),p(SU,NO) 121.35 3.94 0.0391 0.1395 6 242.40 

ψ(TY),p(SU,NO) 123.76 6.35 0.0117 0.0418 6 247.74 

ψ(.),p(SU,NO) 124.54 7.13 0.0079 0.0283 5 253.91 

ψ(EM1),p(SU,NO) 124.59 7.18 0.0077 0.0276 6 249.57 

ψ(DE),p(SU,NO) 124.72 7.31 0.0073 0.0259 6 249.87 

ψ(OR),p(SU,NO) 124.86 7.45 0.0068 0.0241 6 250.18 

ψ(AN1),p(SU,NO) 124.90 7.49 0.0066 0.0236 6 250.26 

ψ(.),p(.) 125.60 8.19 0.0047 0.0167 2 269.55 

ψ(PH),p(SU,NO) 125.76 8.35 0.0043 0.0154 6 252.18 

ψ(SC),p(SU,NO) 125.79 8.38 0.0043 0.0151 6 252.24 

ψ(NV),p(SU,NO) 125.79 8.38 0.0043 0.0151 6 252.23 

ψ(.),p(SU,HE) 125.90 8.49 0.0040 0.0143 5 256.91 

ψ(FL),p(SU,NO) 125.99 8.58 0.0038 0.0137 6 252.68 

ψ(RA),p(SU,NO) 126.23 8.82 0.0034 0.0122 6 253.21 

ψ(OW1),p(SU,NO) 126.26 8.85 0.0034 0.0120 6 253.29 

ψ(HE),p(SU,NO) 126.29 8.88 0.0033 0.0118 6 253.35 

ψ(D2RI),p(SU,NO) 126.35 8.94 0.0032 0.0114 6 253.48 

ψ(EM),p(SU,NO) 126.41 9.00 0.0031 0.0111 6 253.62 

ψ(NS),p(SU,NO) 126.49 9.08 0.0030 0.0107 6 253.80 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(GR),p(SU,NO) 126.49 9.08 0.0030 0.0107 6 253.78 

ψ(D2NH),p(SU,NO) 126.53 9.12 0.0029 0.0105 6 253.88 

ψ(D2OW),p(SU,NO) 126.54 9.13 0.0029 0.0104 6 253.89 

ψ(ED),p(SU,NO) 126.54 9.13 0.0029 0.0104 6 253.89 

ψ(WO),p(SU,NO) 126.54 9.13 0.0029 0.0104 6 253.90 

ψ(.),p(SU) 126.58 9.17 0.0029 0.0102 4 262.85 

ψ(.),p(SU,WI) 127.35 9.94 0.0019 0.0069 5 260.14 

ψ(.),p(SU,EM) 128.51 11.10 0.0011 0.0039 5 262.71 

       

Black Tern (ĉ = 3.39)       

ψ(D2RI,WO,ED),p(SU,HE) 117.81 0.00 0.1680 1.0000 8 389.96 

ψ(D2RI,ED),p(SU,HE) 117.94 0.13 0.1574 0.9371 7 398.11 

ψ(D2RI,WO),p(SU,HE) 118.62 0.81 0.1120 0.6670 7 400.70 

ψ(D2RI),p(SU,HE) 119.08 1.27 0.0890 0.5299 6 410.12 

ψ(WO),p(SU,HE) 120.55 2.74 0.0427 0.2541 6 415.76 

ψ(WO,ED),p(SU,HE) 120.58 2.77 0.0420 0.2503 7 408.20 

ψ(ED),p(SU,HE) 121.08 3.27 0.0327 0.1950 6 417.80 

ψ(.),p(SU,HE) 121.19 3.38 0.0310 0.1845 5 425.86 

ψ(SC),p(SU,HE) 121.27 3.46 0.0298 0.1773 6 418.50 

ψ(HE),p(SU,HE) 121.33 3.52 0.0289 0.1720 6 418.73 

ψ(D2OW),p(SU,HE) 121.45 3.64 0.0272 0.1620 6 419.21 

ψ(RA),p(SU,HE) 121.63 3.82 0.0249 0.1481 6 419.88 

ψ(AN1),p(SU,HE) 121.81 4.00 0.0227 0.1353 6 420.57 

ψ(GR),p(SU,HE) 122.18 4.37 0.0189 0.1125 6 422.01 

ψ(NS),p(SU,HE) 122.26 4.45 0.0182 0.1081 6 422.32 

ψ(DE),p(SU,HE) 122.55 4.74 0.0157 0.0935 6 423.42 

ψ(EM),p(SU,HE) 122.70 4.89 0.0146 0.0867 6 424.01 

ψ(OW1),p(SU,HE) 122.79 4.98 0.0139 0.0829 6 424.35 

ψ(OR),p(SU,HE) 122.82 5.01 0.0137 0.0817 6 424.45 

ψ(D2RD),p(SU,HE) 122.84 5.03 0.0136 0.0809 6 424.53 

ψ(EM1),p(SU,HE) 123.08 5.27 0.0120 0.0717 6 425.45 

ψ(PH),p(SU,HE) 123.11 5.30 0.0119 0.0707 6 425.56 

ψ(CA),p(SU,HE) 123.11 5.30 0.0119 0.0707 6 425.56 

ψ(TY),p(SU,HE) 123.12 5.31 0.0118 0.0703 6 425.60 

ψ(NV),p(SU,HE) 123.16 5.35 0.0116 0.0689 6 425.76 

ψ(FL),p(SU,HE) 123.18 5.37 0.0115 0.0682 6 425.83 

ψ(D2NH),p(SU,HE) 123.19 5.38 0.0114 0.0679 6 425.86 

ψ(.),p(SU,EM) 130.26 12.45 0.0003 0.0020 5 460.60 

ψ(.),p(SU) 130.37 12.56 0.0003 0.0019 4 468.69 

       



  

 

Table C-1.  Continued.       

Species and Model QAIC ΔQAIC wi 

Model 

Likelihood K 

  2 Log-

likelihood 

ψ(.),p(SU,NO) 131.22 13.41 0.0002 0.0012 5 464.28 

ψ(.),p(SU,WI) 132.30 14.49 0.0001 0.0007 5 468.42 

ψ(.),p(.) 134.88 17.07 0.0000 0.0002 2 501.29 

       

Forster’s Tern (ĉ = 1.81) 

      ψ(RA,OW1,AN1),p(HE) 236.83 0.00 0.6567 1.0000 6 406.98 

ψ(RA,AN1),p(HE) 238.43 1.60 0.2951 0.4493 5 413.51 

ψ(RA,OW1),p(HE) 242.71 5.88 0.0347 0.0529 5 421.25 

ψ(OW1,AN1),p(HE) 244.84 8.01 0.0120 0.0182 5 425.10 

ψ(RA),p(HE) 249.16 12.33 0.0014 0.0021 4 436.54 

ψ(OW1),p(HE) 253.59 16.76 0.0002 0.0002 4 444.56 

ψ(AN1),p(HE) 258.93 22.10 0.0000 0.0000 4 454.23 

ψ(D2OW),p(HE) 260.83 24.00 0.0000 0.0000 4 457.68 

ψ(ED),p(HE) 262.62 25.79 0.0000 0.0000 4 460.92 

ψ(CA),p(HE) 269.68 32.85 0.0000 0.0000 4 473.69 

ψ(EM),p(HE) 270.47 33.64 0.0000 0.0000 4 475.13 

ψ(WO),p(HE) 272.14 35.31 0.0000 0.0000 4 478.15 

ψ(HE),p(HE) 272.16 35.33 0.0000 0.0000 4 478.18 

ψ(D2RD),p(HE) 273.21 36.38 0.0000 0.0000 4 480.09 

ψ(SC),p(HE) 274.82 37.99 0.0000 0.0000 4 483.00 

ψ(NV),p(HE) 275.11 38.28 0.0000 0.0000 4 483.53 

ψ(TY),p(HE) 278.84 42.01 0.0000 0.0000 4 490.28 

ψ(D2RI),p(HE) 278.90 42.07 0.0000 0.0000 4 490.38 

ψ(NS),p(HE) 278.93 42.10 0.0000 0.0000 4 490.44 

ψ(OR),p(HE) 279.82 42.99 0.0000 0.0000 4 492.04 

ψ(.),p(HE) 280.08 43.25 0.0000 0.0000 3 496.14 

ψ(GR),p(HE) 280.10 43.27 0.0000 0.0000 4 492.55 

ψ(D2NH),p(HE) 280.10 43.27 0.0000 0.0000 4 492.56 

ψ(FL),p(HE) 281.24 44.41 0.0000 0.0000 4 494.61 

ψ(DE),p(HE) 281.84 45.01 0.0000 0.0000 4 495.70 

ψ(EM1),p(HE) 281.89 45.06 0.0000 0.0000 4 495.79 

ψ(PH),p(HE) 282.02 45.19 0.0000 0.0000 4 496.04 

ψ(.),p(EM) 282.62 45.79 0.0000 0.0000 3 500.73 

ψ(.),p(NO) 284.28 47.45 0.0000 0.0000 3 503.75 

ψ(.),p(WI) 290.03 53.20 0.0000 0.0000 3 514.16 

ψ(.),p(.) 292.25 55.42 0.0000 0.0000 2 521.79 

ψ(.),p(SU) 296.16 59.33 0.0000 0.0000 4 521.63 

 

 



  

 

APPENDIX D 

Classification and Regression Trees Using All Variables 

 



  

 



  

 

 

 



  

 

 



  

 



  

 



  

 



  

 



  

 



  

 

 

 

 

 



  

 

APPENDIX E 

Classification and Regression Trees Using Large-scale Variables Only 



  

 



  

 



  

 



  

 



  

 



  

 



  

 



  

 



  

 



  

 

APPENDIX F 

 

Marsh Bird Distribution Maps 

 

Note:  The estimated probability of marsh bird species occurrence depicted in the following 

maps is based on classification and regression tree (CART) models developed using only large-

scale, remotely sensed landscape variables.  Models incorporated marsh bird occupancy and 

large-scale independent variables estimated at 993 points surveyed in Michigan and Ohio during 

2005—2013.  Least Bittern was not detected often enough for CART analysis to function.  A 

distribution map was not produced for Sora, because the model was too simple (one variable) to 

reasonably predict likelihood of occurrence. 



  

 

 

 



  

 

 



  

 

 



  

 

 

 



  

 

 



  

 

 

 



  

 

 



  

 

 

 


